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Abstract

Behavioral and neurobiological evidence
shows that primacy and recency are
subserved by memory systems for
intermediate- and short-term memory,
respectively. A widely accepted explanation
of recency is that in short-term memory,
new learning overwrites old learning.
Primacy is not as well understood, but many
hypotheses contend that initial items are
better encoded into long-term memory
because they have had more opportunity to
be rehearsed. A simple, biologically
motivated neural network model supports
an alternative hypothesis of the distinct
processing requirements for primacy and
recency given single-trial learning without
rehearsal. Simulations of the model exhibit
either primacy or recency, but not both
simultaneously. The incompatibility of
primacy and recency clarifies possible
reasons for two neurologically distinct
systems. Inhibition, and its control of
activity, determines those list items that are
acquired and retained. Activity levels that
are too low do not provide sufficient
connections for learning to occur, while
higher activity diminishes capacity. High
recurrent inhibition, and progressively
diminishing activity, allows acquisition and
retention of early items, while later items
are never acquired. Conversely, low
recurrent inhibition, and the resulting high
activity, allows continuous acquisition such
that acquisition of later items eventually
interferes with the retention of early items.

Introduction

Following a single exposure to learning, recall
is better for items at the beginning (primacy) and

end (recency) of a list than for middle items. This
familiar U-shaped serial position curve is taken as
evidence for two distinct memory systems (Glan-
zer and Cunitz 1966). By one account (Waugh and
Norman 1965), primacy occurs in a system for
long-term memory (LTM), which may maintain in-
formation indefinitely, and recency occurs in a sys-
tem for short-term memory (STM), where unre-
hearsed information is generally lost in as little as
20 seconds. Accordingly, STM maintains the last
few learned items, resulting in recency (Craik et al.
1970). Early list items, which have had the most
opportunities for rehearsal in STM, have likewise
had the greatest chance to be processed into LTM,
resulting in primacy (Rundus 1971). However,
some have argued (e.g., Crowder 1982) because
initial items have no interference from preceding
items and final items have no interference from
subsequent items, that a single system could
achieve both primacy and recency (Melton 1963;
Wixted and Ebbeson 1991).

Compelling evidence for two or more distinct
memory systems came first from memory impaired
patients and later from primate studies. Impair-
ments of the dorsolateral frontal lobes diminish
short-term memory performance and disrupt the
recency effect (Shallice and Vallar 1990; Milner et
al. 1990). Conversely, damage to the medial tem-
poral lobes, which includes the hippocampal for-
mation and surrounding cortices, severely impairs
LTM formation (i.e., anterograde amnesia) and also
disrupts the primacy effect (Milner 1970). Impor-
tantly, disruption of one system has little effect on
the performance of the other (Shallice and Vallar
1990; Castro 1995, 1997), indicating that the sys-
tems are distinct and largely independent, and that
the formation of LTM does not require prior pro-
cessing in STM.

In addition to anterograde amnesia, damage to
the medial temporal lobes results in temporally
graded retrograde amnesia indicating that the for-
mation of LTM involves a labile period of recoding
and consolidation, which depends upon the me-
dial temporal lobes (for reviews, see Squire 1992;1Corresponding author.
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Eichenbaum et al. 1994). This stage of memory is
referred to as intermediate-term memory (ITM).
This third system also contributes to the main-
tainance of items or events in memory. By combin-
ing all these lines of evidence, we are led to con-
clude that primacy and recency result from the
single-trial learning characteristics of distinct ITM
and STM systems.

While it is now well established that STM and
ITM are subserved by distinct systems, it is still not
clear what specific processing differences charac-
terize these systems, nor is it clear whether such
differences constitute incompatibilities that might
have favored the evolution of separate memory sys-
tems (Sherry and Schacter 1987). Here we examine
the processing requirements for primacy and re-
cency to understand the differences that engender
distinct systems for ITM and STM.

Our general approach is to model the under-
lying neural processing mechanisms of behavior-
ally observable phenomena within a minimal, neu-
robiologically motivated network architecture de-
signed to learn sequences of input patterns. Several
considerations follow directly: To maintain biologi-
cal plausibility without sacrificing comprehensibil-
ity, the model uses McCulloch-Pitts type neurons
(i.e., fire or not fire) with sparse asymmetric recur-
rent connections, local associative synaptic modi-
fication, and only a few parameters (Figure 1). Ad-
ditionally, the simulations are done without reli-
ance on algorithmic features such as a rehearsal
mechanism and without external control of stimu-
lus weighting, synaptic modification, or activity
modulation. Rather, global network behavior is a
purely emergent property of local cellular modifi-
cations. While all connectionist models propose to
understand information processing from patterns
of neuronal connections, our model may be more
relevant than back-propagation models, which gen-
erally use a class of biologically implausible nonlo-
cal learning rules. The model has proven to be
computationally and theoretically informative for a
wide variety of cognitive and behavioral simula-
tions. For example, the model has helped explain
the neural mechanisms underlying several well-
documented learning paradigms, such as trans-
verse patterning and transitive inference (Levy
1996; Levy and Wu 1997). Thus, we believe this
architecture provides a basis for understanding the
most important characteristics of recurrent net-
works without making the model excessively con-
fusing or computationally costly. For this paper,
the model was configured for single trial learning

to examine quantitatively the similarities and dif-
ferences between networks that exhibit primacy
and recency.

Materials and Methods

Networks were trained on a series of twenty
items (each a sequence of neural activations). A
high coefficient of synaptic modification (Fig. 1d)
allowed single-trial learning (Minai and Levy 1993).
Interestingly, networks configured for primacy and
recency differed only in the coefficient of recur-
rent inhibition (KR controls the inhibition at a
given time step based on the total cell firing during
the previous timestep; see Fig. 1), which is central
to the modulation of activity. Activity is simply the
proportion of neurons that fire at any particular
time. Activity levels determine the characteristics
of learning for reasons we will detail in the Results
and Discussion sections. While several factors (Fig.
1) may influence activity levels, recurrent inhibi-
tion is a very direct (Minai & Levy 1994) and neu-
rophysiologically well-established (Eccles 1969;
Martin 1985; Moser 1996) mechanism of activity
control. Furthermore, because recurrent inhibition
allows dynamic activity control (i.e., although KR is
fixed, the effect of inhibition varies with activity;
see Fig. 1b), activity levels can change throughout
training, a property which is axiomatic for serial
position effects. A single network of this type
could not be configured to simultaneously exhibit
both primacy and recency. Consequently these
simulations may provide insights that explain why
distinct systems are necessary for short and inter-
mediate-term memory.

NETWORK PARAMETERS

Each network simulation incorporated 2000
neurons. Connectivity was 10% (each neuron re-
ceived connections from exactly 200 other neu-
rons, with no self-connections); for connected neu-
rons, initial synaptic weights, wij(u), all started at
0.35; firing threshold, 0, was 0.5. In order to
achieve single-trial learning, the coefficient of syn-
aptic modification, µ, was 0.8 (for a discussion, see
Minai and Levy 1993). The inhibition constants
were: KI = 0.01, K0 = 0.3, and KR = 0.06 or
KR = 0.03 for primacy- and recency-biased net-
works, respectively (for a discussion of inhibition
and activity control see Smith et al. in press). Ap-
propriate values of KR were selected empirically by
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varying KR between 0 and 1 in increments of 0.001
and choosing those values which produced the
highest overall completion similarity (see below).

ITEMS AND TRAINING

A training epoch consisted of a single presen-
tation of 20 items, each of which constitutes the
fundamental learned unit. Each item was a se-
quence of 10 patterns (or network state vectors),
presented in series, one at each timestep t (i.e.,
vector 1 at timestep 1, vector 2 at timestep 2, etc).
Each pattern is analogous to a feature of an item,

such as a phoneme. Note that in behavioral para-
digms, stimulus items are known to occupy neural
processing time (Burrows and Okada 1975),
wherein differing aspects of the stimuli are pro-
cessed (Cavanagh 1972). An input pattern con-
sisted of 10 externally activated neurons, where
external selection guarantees that the neuron will
fire (Fig. 1a). At the same time, recurrently acti-
vated neurons fire because they have received a
sufficient input (above firing threshold) from pre-
viously active neurons (Fig. 1a,c). For any training
timestep t, the externally and recurrently activated
neurons together compose the encoded pattern.

Figure 1: The neural network model.
The model features simple McCulloch-
Pitts neurons, shunting inhibition from a
single inhibitory interneuron, which
loosely controls activity, and sparse, re-
current excitatory connections. (a) A neu-
ron, j, fires at any given timestep if its ex-
ternal input (xj) is on (i.e., the neuron is
forced to fire), or the net recurrent excita-
tion (yj) meets or exceeds the firing thresh-
old 0. (b) The net excitation of neuron j at
time t is the gross excitation of the neuron
reduced by inhibitory shunting. The gross
excitation is given by the sum of the re-
current inputs (zi[t-1]) multiplied by their
respective coefficients of synaptic weights
(wij). KR is the coefficient of recurrent in-
hibition, KI is the coefficient of external
inhibition, (consistent with fast-acting in-
hibitory interneurons (e.g., Buszaki and
Eidelberg 1982) K0 is a constant inhibitory
term, corresponding to a resting conduc-
tance. (c) Recurrent excitatory connec-
tions are sparse and random. (d) Synaptic
weights are initially uniform and then are
modified according to a postsynaptic
modification rule: When the postsynaptic
neuron fires, the synaptic weight in-
creases if the presynaptic neuron fired on
the previous time step, and it depresses if
the presynaptic neuron did not fire. If the
postsynaptic neuron does not fire, the syn-
apse is not modified. Although homosyn-
aptic LTD is more widely researched, het-
erosynaptic modification exists in CA3 and
dentate gyrus (Bradler and Barrionuevo
1998; Levy and Steward 1979). Synaptic
modification rules for prefrontal cortex are
not established. The synaptic modification
rate µ controls the speed of learning by scal-
ing the magnitude of synaptic modification.
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Given that capacity limitations are inherent in any
memory system and necessary for serial position
effects, we intentionally exceeded the network’s
capacity so that uniformly good learning was not
possible. While all input patterns were orthogonal
to one another (i.e., no shared neurons) the en-
coded patterns could and did overlap. That is, al-
though each neuron was externally activated once
and only once, most neurons were also recurrently
activated at least once. At each timestep t, the syn-
aptic weights were allowed to vary as governed by
the local modification rule (Fig. 1d).

QUANTIFYING OUTPUT QUALITY

Following training, synaptic modification was
disabled and an additional set of simulations gen-
erated the output used to assess learning. For
single-prompt output, we presented the first input
pattern (external neurons) from a given item and
allowed the network to run without further input
to elicit completion of the remaining 9 encoded
patterns (external and recurrent neurons) of that
item. For full-prompt output, all 10 input patterns
of an item were presented in sequence to generate
the encoded patterns of that item. Single-prompt
output defines the network’s recall and full-prompt
output defines the correct codes. The single-prompt
outputs were then compared to full-prompt outputs
for accuracy.

The quality of output is completion similarity,
which is a comparison of input and output vectors.
Specifically, for a given item, completion similarity
was computed by averaging cosine similarities (for
details, see Kohonen 1997) between single-prompt
output vectors and corresponding full-prompt out-
put vectors. Two qualifications exist: In rare in-
stances, a given pattern’s single-prompt output
was a closer match to another pattern’s full-prompt
output than it was to its own, in which case the
cosine similarity for that pattern was set to 0 (recall
failure). Secondly, the first (prompted) vector for
each item was omitted from the computation of
completion similarity because the cosine values are
always 1.0. To assess the accuracy of a given item,
the remaining 9 cosines for each item were aver-
aged together to yield the mean cosine similarity
measure for that item. This entire training-testing
procedure was repeated 25 times, each with a dif-
ferent random initialization seed (connectivity re-
mained constant at 10% but the choice of con-
nected neurons is randomized, as is the choice of
neurons active for the first timestep t). For a given

item the mean cosine similarities from all 25 simu-
lations were averaged to produce the completion
similarity for that item. The averages are shown in
Figure 2 (standard error for all items is less than
3%).

ASSESSING RETENTION AND ACQUISITION

For retention simulations, training consisted of
a single, sequential presentation of all 20 items.
Network output was generated and assessed as de-
scribed above. The completion similarity of each
item was graphed against the serial position of that
item (Figs. 2a,b). While retention is the usual mea-
sure of memory quality, failure to retain informa-
tion may result when items are never learned or
when learned items are forgotten. The distinction
between forgetting and failure to acquire is essen-
tially indistinguishable in behavioral and cognitive
paradigms, while neural network models are well
suited to analyze this distinction.

Acquisition was assessed by partial training
and then testing. Acquisition simulations for item n
consisted of training a network on items 1 through
n only, followed by output production and
completion similarity computations for only item
n. This allowed an assessment of learning without
any overwriting from subsequent items. Identically
parameterized simulations produced output vec-
tors for all 20 items. For a given parameterization,
the set of 20 simulations is equivalent to a single
simulation in which acquisition is assessed after
each item without disrupting training. Item acqui-
sition for primacy- and recency-biased networks
was graphed against serial position (Figs. 2c,d).

ASSESSING THE ACQUISITION-ACTIVITY
INTERACTION

An additional set of simulations (Figs. 3a,b) am-
plify the information available from the acquisition
simulations (Figs. 2c,d) by including the activity
levels observed during network training and the
changes in acquisition associated with varied activ-
ity. First, to measure activity during learning, simu-
lations were performed for an entire training ep-
och for both a primacy- and a recency-biased net-
work. Activity level was recorded for each item.
Again, the procedure was repeated for 25 initial-
ization seeds and the output was averaged to pro-
duce average item activity for each item (Figs. 3a,
b, thick black line).

Because activity level and training experience
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change simultaneously throughout training, we de-
vised an analysis to distinguish the effects of these
two variables. Functionally, a network learns n-1
items exactly as it would in the primacy or recency
case, then activity is varied to sample all possible
activity levels, and the acquisition performance is
measured at each sampled activity level. For fixed
values of KR (0.06 for primacy and 0.03 for re-
cency), and a fixed serial position for an item (n =
1,2, ..., or 20), a network was trained on items 1
through n-1. Then, we varied KR between 0 and 1
in increments of 0.001 and trained the final item n.
The KR variation cycle was repeated for all n be-
tween 1 and 20. Acquisition accuracy and network
activity were both assessed across all items and all
increments of KR. Again, this entire procedure was
repeated for 25 network configurations, the results
of which were averaged together, by item.

The acquisition-activity pairs for each serial po-
sition are expressed as contour plots (Figs. 3a,b,
colored lines). Data pairs containing 0 activity
were omitted. For a given item, data pairs from all
simulations were sorted with respect to activity

into a vector of pairs. To generate smooth contour
data, each vector was then divided into bins of 25
pairs each, averages were computed for each bin,
and finally new pairs of performance (acquisition
completion similarity) and activity were interpo-
lated from a quadratic fitted to the averages. Con-
tour plots were graphed from the resulting matri-
ces of points. One can see that the activity levels
observed in the networks (Figs. 3a,b, thick black
line), determine the probability of acquisition
(Figs. 2c,d).

Results and Discussion

Recurrent inhibition, and its control of activity,
determined item retention (Figs. 2a,b). Impor-
tantly, when recurrent inhibition was varied from
lower to higher levels, there was a smooth transi-
tion from recency, to uniformly poor learning, to
primacy. When parameterized with a high coeffi-
cient of recurrent inhibition, the output of the net-
work tended toward primacy with good retention
for the first few items, while retention of later

Figure 2: Primary versus recency. A net-
work exhibits primacy when parameter-
ized with a relatively high coefficient of
recurrent inhibition [KR = 0.06] and re-
cency when parameterized with a lower
coefficient of recurrent inhibition
[KR = 0.03]. For primacy (a), the earlier
items were recalled best during retention
tests. For recency (b), later items were re-
called better than earlier items during re-
tention tests. In contrast to retention, ac-
quisition testing determines how well an
item is learned without interference from
subsequent learning. In the primacy case
c, early items were acquired whereas
later ones were not. Thus, the primacy
retention result is explained by the ab-
sence of later acquisition where this ab-
sence protected earlier learning from
overwriting. On the other hand, acquisi-
tion assessment indicates that recency
simulations (d), are continuously learning
and, therefore, earlier items are overwrit-
ten as additional items are presented. The
completion similarity measure is the av-
erage cosine between input and output
vectors for all patterns of a given se-
quence. For retention simulations net-
works are trained on all 20 sequences, synaptic modification is turned off and the output sequence of vectors for all items
are generated. For acquisition simulations, a given item n was assessed by training networks on items 1 through n, turning
off synaptic modification and cueing for the output of item n.
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items was quite poor. When parameterized with a
low coefficient of recurrent inhibition, networks
show a clear tendency toward recency with better
retention for later items than for early items. The
differences between primacy- and recency-biased
networks will be shown to depend on how items
are differentially acquired, and which of those are
retained. The mechanisms of acquisition and reten-
tion will be explained as a consequence of activity
control.

Acquisition measures how well a given item is
learned before either time or the introduction of a

new item can diminish learning. As with the reten-
tion simulations, the level of recurrent inhibition
determined which items were acquired (Figs.
2c,d). In simulations configured for primacy, acqui-
sition was high for early items but then dropped
precipitously, indicating that only early items were
learned. In networks configured for recency, ac-
quisition remained fairly constant, which means
that continual learning occurred. Taken together,
acquisition and retention of items provide a foun-
dation for understanding why primacy and recency
occur in these simulations. For primacy, early

Figure 3: Separating activity effects from se-
rial position effects. These contour plots show
the relationship between acquisition and ac-
tivity for each sequential item. The black line
of each figure shows the observed activity lev-
els for each successive item in simulations pa-
rameterized for primacy (a) and recency (b).
The colored contour lines represent a surface
where altitude indicates acquisition quality at
various activity levels for each item. Activity
was controlled indirectly by iterating through
values of KR. For any item n, networks were
trained on items 1 through n-1, KR was altered
and item n was trained. Thus, by varying ac-
tivity on the target trial, we separate the effect
of activity level from the effect of serial posi-
tion. Note how the primacy-biased simula-
tions briefly maintain high enough activity lev-
els to allow early acquisition, but the activity
quickly drops to a low activity level where
acquisition is highly unlikely. The recency-bi-
ased simulations do not drop to so low a level
resulting in a moderate to high probability of
acquisition throughout training.
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items were acquired and retained, and later items
were never acquired. For recency, all items were
acquired but only the most recent items were re-
tained. The precise mechanisms that allow selec-
tive acquisition in primacy-biased networks and se-
lective retention in recency-based networks are a
direct consequence of the control of systemic ac-
tivity.

THE CENTRAL ROLE OF ACTIVITY

The fundamental difference between net-
works exhibiting primacy and those exhibiting re-
cency is the dynamic modulation of activity, here
engendered by recurrent inhibition. The function
of inhibition is to govern overall network activity.
In particular, the shunting effect of recurrent inhi-
bition increases when more neurons are active be-
cause a proportion (KR) of activity from a given t is
fed back as inhibition for the subsequent t (Fig.
1b). To see activity changes, we plotted network
activity for both primacy- (higher recurrent inhibi-
tion) and recency-biased networks (lower recur-
rent inhibition) against serial position (Figs. 3a,b,
thick black lines). It is apparent that with higher
recurrent inhibition (primacy-biased) activity
dropped more quickly to low levels, while with
lower recurrent inhibition (recency-biased) activity
was maintained at a relatively higher overall level.

Network activity determines the characteristics
of learning in at least three important ways: First,
Hebbian synaptic modification depends directly on
cell firing. In predominantly positive feedback net-
works, the greater the number of active neurons,
the greater the likelihood that any given synapse
will be modified (Figs. 1c,d). Second, as activity
levels decrease, it becomes increasingly unlikely
that synapses will exist between sequentially ac-
tive neurons. Recall that the model employs bio-
logically motivated sparse connectivity such that
any neuron was connected to only 10% of other
neurons. For example, at the lowest possible activ-
ity level for these simulations (only 10 external
neurons active), ∼35% of the active neurons would
be expected to have no available inputs from the
previously active neurons (p = (0.9)10 = 0.35). On
the other hand, at higher activity levels external
neurons are accompanied by numerous recur-
rently activated neurons, which are activated solely
by their existing connectivity from other active
neurons. For these two reasons, as activity de-
creases, there is a rather sudden drop in the prob-
ability of acquisition that results from insufficient

recurrent activity. Third, higher activity levels also
mean that the system’s capacity will be lower. For
example, if we suppose that activity did not
change over time, the theoretical capacity for
nonoverlapping (orthogonal) patterns would be in-
versely proportional to the fraction of the neurons
active for any one pattern (Levy and Wu 1996). A
learned item becomes disrupted if the neurons in-
volved in its representation are later co-opted to
become part of the representation of other pat-
terns via associative modification of their input syn-
apses. When acquisition is ongoing, the earliest
items are most likely to be lost from memory be-
cause they suffer the most overwriting. Simply put,
higher activity means that learning is more likely to
occur, but it also reduces the overall capacity such
that older items tend to be overwritten more
quickly by newer items. Interestingly, it is this ten-
dency to overwrite the oldest items that causes
recency to occur in high activity networks, and it is
also why primacy is observed only in networks in
which early learning is protected by diminishing
activity.

The relationship between activity and acquisi-
tion (Figs. 3a,b, colored contour lines connect
points of equal acquisition probability) is central to
understanding the differences between primacy-
and recency exhibited by these simulations. As can
be seen, for both the primacy and recency-biased
networks, activity below ∼1.0% was too low to
support learning. In the primacy-biased network,
activity dropped quickly to levels where acquisi-
tion was highly unlikely. On the other hand, the
recency-biased network maintained activity levels
throughout training that corresponded to moder-
ately high acquisition.

To recapitulate, the low recurrent inhibition
network (biased towards recency) remained at ac-
tivity levels that promoted a high probability of
acquisition throughout training such that incoming
items were continuously learned. But the high ac-
tivity levels also diminished capacity and increased
the likelihood that old items would suffer overwrit-
ing. Thus all items were acquired, but only items
late in learning were retained. On the other hand,
the high recurrent inhibition network (biased to-
ward primacy) began at activity levels that pro-
moted a high probability of acquisition, but activity
descended to levels where acquisition was very
unlikely. Items encountered early were acquired,
well because of high initial activity levels. Declin-
ing activity levels did not support synaptic modifi-
cation or provide enough synapses to encode later
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items. Since later items were not acquired, nor
were many synapses modified, there was only
minimal disruption to the retention of items ac-
quired early in learning.

RELEVANCE TO BEHAVIORAL, COGNITIVE
AND BIOLOGICAL LITERATURES

Several considerations are important for com-
paring this learning model to human and animal
learning models. For each simulation, a network is
initialized (synaptic weights are reset to initial val-
ues) prior to learning. Because a recency-biased
network retains the most recent patterns, contin-
ued learning without reinitialization should make
no difference. Thus, because STM is well-estab-
lished as an ongoing learning system (Waugh and
Norman 1965), the characteristics of the recency-
biased network are most relevant after activity
settles to asymptotic levels (i.e., after the first ten
or so items have been learned). However, this is
not the case for a primacy-biased network. If on-
going stimulus presentation is assumed, new learn-
ing in a primacy-biased network must be accompa-
nied by a boost in activity (N.B., in our simulations,
this activity increase is a by-product of initializa-
tion). In fact, fMRI evidence shows that medial
temporal lobe activity is temporarily increased
when novel stimuli are introduced (Dolan and
Fletcher 1997). Additionally, single-unit electrode
recordings from the CA1 region of the rat hippo-
campus reveal that novelty induced learning erases
recent synaptic modification via a reversal of pre-
viously induced long-term potentiation (Xu et al.
1998). Note that the two critical features of initial-
izing a network in these simulations are an initially
high activity level and a randomization of synaptic
weights. Such findings are highly consistent with
the notion that the introduction of novelty causes
the ITM system to reset for new learning. While we
do not speculate on where or how novelty is de-
tected, the resultant increase in medial temporal
lobe activity and reversal of LTP tend to support
our hypothesis of primacy.

Several aspects of this model differ substan-
tially from many current cognitive and behavioral
models of STM and ITM. First, a rehearsal mecha-
nism is widely believed to explain the primacy
effect. Our model does not achieve primacy by
preferentially rehearsing initial items. By most re-
hearsal accounts, items are intentionally main-
tained in STM such that initial items are better re-
hearsed and thereby more likely to be processed

into ITM. There are several problems with re-
hearsal hypotheses of primacy. Maintenance re-
hearsal is neither sufficient nor necessary for ITM
formation (Craik and Watkins; 1973; Yates and Cur-
ley 1986). Additionally, STM impaired patients
show that an intact STM system is not necessary for
primacy to occur (Shallice and Vallar 1990). Fi-
nally, primates show primacy in list learning
(Castro and Larsen 1992), but intentional rehearsal
strategies are dubious in this case. Models of ITM
that do not require rehearsal are not only more
parsimonious, they are also more consistent with
convergent empirical findings.

A second area of divergence between this
model and others is that here dynamic activity
modulation (governed by recurrent inhibition) is
hypothesized to be the critical difference between
systems for STM and ITM. According to most ac-
counts of serial position effects, ITM is a slow-
learning system and STM is a fast-learning system
(Atkinson and Shiffrin 1968). However, for these
simulations, primacy and recency are achieved
with identical rates of synaptic modification (Fig.
1d). The hypothesis of slow- and fast-learning sys-
tems gained favor when it was believed that the
very purpose of STM was to rehearse information
for the ITM/LTM system (ITM and LTM had not yet
been distinguished). However, because ITM does
not require rehearsal in STM and since both STM
and ITM are capable of single-trial learning, the
hypothesis of slow- and fast-learning systems loses
a great deal of support. The architectures we used
for primacy- and recency-biased networks were ab-
solutely identical except for changes in the param-
eterization of recurrent inhibition. The hypothesis
put forth here is that recurrent inhibition may con-
stitute a sufficient difference between systems for
STM and ITM. Specifically, we do not propose that
biological systems for STM and ITM necessarily
share identical architectures, but these results do
suggest that dynamic modulation of activity may be
the critical distinction between such systems.

The present model also provides a neural basis
for theories that explain serial position effects in
terms of interference (Underwood 1957). By such
accounts, learning a given item can prevent the
acquisition of future items (proactive interference)
or it can disrupt previous learning (retroactive in-
terference). Primacy is believed to be the result of
proactive interference (e.g., Han et al. 1998) and
recency is the consequence of retroactive interfer-
ence. Our model extends this theoretical perspec-
tive by hypothesizing clear, precise, and internally
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consistent mechanisms of interference for differen-
tial acquisition and retention. That is, proactive in-
hibition is exhibited in networks parameterized
with high recurrent inhibition such that the activ-
ity during early learning drives down subsequent
activity to prevent later learning as well as the con-
sequent overwriting of early items. Likewise, ret-
roactive interference is exhibited in networks pa-
rameterized with low recurrent inhibition because
higher asymptotic activity allows ongoing learning
to disrupt early learning.

The effect of activity on acquisition also ex-
plains why primacy and recency are not observed
simultaneously in a single network. Simply put, ac-
tivity profiles which protect early learning (pri-
macy) do so at the expense of later learning (re-
cency), and vice-versa. Because all items have the
same external activity and are presented only once
for learning, without rehearsal, the only differ-
ences between learned and unlearned patterns are
the levels of activity during learning. A single sys-
tem of this type could not be made which would
allow new items to overwrite old and simulta-
neously preserve initial items because all acquired
items are either vulnerable to overwriting or they
are not (c.f., the stability-plasticity problem; Gross-
berg 1982). Thus in this type of model (with fixed
parameters and no rehearsal) primacy and recency
constitute mutually exclusive events.

Finally, we offer several straightforward pre-
dictions. While engaged in single-trial or novel
learning, ITM should exhibit identifiable activity
maxima corresponding to better memory for
items at the beginning of novel lists, while STM
should exhibit a more constant level of activity,
corresponding to consistent acquisition of all in-
coming items. Furthermore, the distinction be-
tween STM and ITM should be observable as a
stable activity level in STM (recall that the asymp-
totic activity is argued to be the relevant portion of
the recency model) compared to a precipitous
drop in activity for ITM. Thus, differences in rela-
tive activity across items should correspond to the
characteristic acquisition and retention gradients
for ITM and STM systems.
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